Nanosimulation

The research field Nanosimulation at the IMWF

The research field Nanosimulation

In this field of work, simulations of different materials are performed on the atomic scale. Here, ab initio methods, classical molecular dynamics simulations and atomistic Monte-Carlo-simulations are used. Also, scale spanning projects with simulations on the mesoscale (e.g. dislocation dynamics and phase field method) are carried out.

Overview over the projects in nanosimulation

Joint project: research of a high-resolution, contactless sensor technology for robust torque determination for efficient E-mobility solutions – TorMaSens –
Contact information: Dr.-Ing. Peter Binkele    E-Mail

Investigation of the particle strengthening mechanism during creep of TaC strengthened Co-Re based alloys
Contact information: Dennis Rapp, M.Sc.    E-Mail
Contact information: Dr. rer. nat. Stephen Hocker    E-Mail
Contact information: Dr. rer. nat. Hansjörg Lipp    E-Mail

MD simulations of strengthening by graphene in iron crystals
Contact information: Dr. rer. nat. Stephen Hocker    E-Mail
Contact information: Dr. rer. nat. Hansjörg Lipp    E-Mail
Contact information: Dennis Rapp, M.Sc.    E-Mail

Simulations of hydrogen embrittlement in Ni-based super alloys
Contact information: Xiang Xu, M.Sc.    E-Mail

Nanoscale modelling of mechanical behaviour of crystals with structure gradients: atomistic simulations of nickel base super alloys
Contact information:  Dr. rer. nat Christopher Kohler   E-Mail

Nanoscale modelling of the nanoindentation test on ultrahard metal carbide shift systems
Contact information:  Dr. rer. nat Peter Kizler

Atomistic simulation of solid solution strengthening in iron
Contact information:  Dr. rer. nat Christopher Kohler   E-Mail

Calculation of residual stress, stemming from coherent nanoscale precipitates
Contact information:  Dr.-Ing. Peter Binkele   E-Mail

Molecular-dynamic modelling and validation of the manufacturing and the structure-characteristics correlations of SiC/SiN-nano laminates
Contact information: Dipl.-Phys. Alen-Pilip Prskalo    E-Mail

Multi-scale simulation for the structure optimization of particle distributions in the energy system Fe-Cu-Ni-Mn
Contact information:  Dr. rer. nat Alejandro Mora    E-Mail

Multi-scale simulations of metals
Contact information: Dipl.-Phys. David Molnar

MD-simulations of strengthening with GP-zones in the system Al-Cu
Contact information: Dipl.-Phys. Martin Hummel    E-Mail

Improved toughness/stiffness balance of nanoparticle filled polyamide composites – simulation supported property/morphology correlation
Contact information: Dipl.-Ing. Jing Wiedmaier, geb. Huang
Contact information: Dipl.-Ing. Wolfgang Verestek   E-Mail

Scale bridging techniques from atomic scale to continuum level for plasticity
Contact information: Dennis Rapp, M. Sc.   E-Mail

Atomistic simulation of inner interfaces with copper-based alloys (SFB 716, subprojekt B.2)
Contact information:  Dr. rer. nat Stephen Hocker   E-Mail

Molecular-dynamic simulations about the influence of precipitates on the localization of strains in aged Al-Mg-alloys
Contact information: Dipl.-Phys. Martin Hummel    E-Mail

Machine-learning approach to Dislocation Dynamics
Contact information: Dennis Rapp, M. Sc.    E-Mail

Experimental and numerical qualification of morphology/characteristics-correlations by means of the essential-work-of-fracture method (EWF) by the example of polymer blends
Contact information: Dipl.-Ing. Wolfgang Verestek    E-Mail
Contact information: Mario Mlikota mag. ing. mech.    E-Mail

Animations

© IMWF

Movement of relocation in ferric steel with copper precipitates
Contact information:  Dr. rer. nat Stephen Hocker    E-Mail

© IMWF

Molecular-dynamic simulation of relocation movement in an aluminium alloy with Guinier-Preston-zones, Simulation 1
Contact information: Dipl.-Ing. Wolfgang Verestek    E-Mail

© IMWF

Molecular-dynamic simulation of relocation movement in an aluminium alloy with Guinier-Preston-zones, Simulation 2
Contact information: Dipl.-Ing. Wolfgang Verestek    E-Mail

© IMWF

Molecular-dynamic simulation of a relocation formation during tensile test on a aluminium poly crystal
Contact information: Dipl.-Phys. Martin Hummel     E-Mail

© IMWF

Molecular-dynamic simulation of an impact of a bullet in a porous structure
Contact information: Dipl.-Phys. Martin Hummel     E-Mail

© IMWF

Nanoscratching with a Berkovich-Intender on Al substrate by molecular dynamics
Contact information: Dipl.-Ing. Wolfgang Verestek     E-Mail

To the top of the page